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Abstract—Response of the surface temperature of an initially uniform temperature material space bounded
internaily at radius » = a and heated with a flux Q = Qsin{wt+¢) is studied. This is done with the use
of Duhamel’s integral together with a previously obtained solution to the constant step heating problem.
Application of the Euler transformation to short time expansions and the use of various asymptotic
expansions result in analytic solution estimates useful for different ranges of w and . Together these
estimates can be used to predict the entire history of the surface temperature for arbitrary w and &
They can easily be used to compute the r = a surface temperature history under conditions of arbitrary

periodic heating.
NOMENCLATURE 0, dimensionless temperature field resulting
A, amplitude of 6, in quasi-steady state; from constant J heating;
a, radius of cavity surface; B, dimensionless temperature of cavity wall

¢, expl)
Ci, cosine integral;

C®,  Fresnel cosine integral;
E®  multiple Euler transformation;
e, terms of transformed series;

dm,  coefficients in J, expansion;
Fo,  small to moderate 7 estimate of f;;

F., large t estimate of §,;
f.g. functions related to sine and cosine integrals;
I, I;, integrals used in definition of 8, response;

I, terms in a series for estimating I, ;

I™,  terms in a series for estimating I;

K, a constant;

k, thermal conductivity;

P, number of times Euler transformation is
taken;

0, a periodic heat flux;
g, a constant heat flux;
r, radius;

S, Fresnel sine integral;
Si, sine integral;

T, temperature;

To,  initial temperature;
T,  surface temperature;

t, time,

Greek symbols
o, thermal diffusivity;
T, gamma function;
s Euler’s constant;

&, phase of Q;

£, a value of Q¢ used for matching;

8, dimensionless temperature;

8;,  dimensionless surface temperature;

*Present address: Bell Telephone Laboratories, Whippany,
New Jersey 07981, US.A.
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heated with constant J;
Am»  coefficients in 8, expansion;

P r/a;

T, dimensionless time;

¢, phase lag between Q and 0,;

P, dimensionless surface heat flux;
¢, dummy variable;

Q, dimensionless w;
w, frequency.

1. INTRODUCTION

THIS paper studies the temperature field of a region
bounded internally by a cylinder of radius r = g, where
the region is initially at uniform temperature, Tp, and
where at time ¢ = 0 the cavity wall r = g is heated by
an oscillating heat flux Q given by

Q = Osin{wt+¢) = 0sin(Qr+¢). (1)

Here the dimensionless frequency, Q, and time, 7, are
defined as:

wa® at

Q= e 2
where « is the thermal diffusivity of the material.
Attention is confined to analytic estimates of the cavity
wall temperature history.

The estimates obtained—there are four in all—
together are found to uniforinly cover the entire range
0 <7 and 0 < Q. We define the dimensionless tem-
perature field § and dimensionless surface temperature
g, as

8 = 2(T- To)k/(Qa) = 8(p, 7; Q, 8)} 3)

B, =0(1,7;Q,¢8) = 0,(1,Q, &)

where T is the temperature field, p = r/a, and k is the
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thermal conductivity of the material. Then the four
separate results referred to are:
Transient response for arbitrary €

0, tfixed =20, Q arbitrary. (4a)

Asymptotic approach to quasi-steady state in the limit
of large Q

Aim 0, 0 < fixed. (4b)
Asymptotic approach to quasi-steady state for fixed,
nonzero )

nltuqn 6, 0<Q fixed. (40

Asymptotic approach to quasi-steady state in the limit
of small Q

lim 6, 0 < Qr fixed.

Q-0

(4d)

The utility of these results cover every possible appli-
cation of the specified periodic surface heat flux prob-
lem (where the solid exterior to the cavity can be
accurately modeled with uniform and constant proper-
ties k and ). Thus, for example, the large Q estimates
of (4a) and (4b) would find application in predicting
internal wall temperatures in rapid fire, thick walled
gun barrels (i.e. where the temperature field resulting
from the fluctuating component of the periodic heating
was negligible at the exterior wall of the barrel) where
some useful modeling of the internal firing phenom-
enology yielded a periodic wall flux boundary con-
dition [1].* On the other extreme, the small Q estimates
of (4a) and (4d) would find application in cylindrical
cavity earth heat exchanger problems where the fun-
damental period of the periodic heating was based on
the annual cycle. The moderate Q estimates of (4a)
and (4c) complete the general solution to the stated
problem. These would find application, for example, in
the latter earth heat exchanger problem where the
details of the daily periodic heating cycle were of
interest.

2. STATEMENT OF THE PROBLEM

The temperature field, 6, on and exterior to the cavity
wall is governed by the following boundary value
problem:

9 %0 106

ot dp* pap

>1, 1=0:0=0
g ©)

2
p=1©>0: —a—9= 20(1) = 2sin(Q1 +¢)
I

1>0:0-0.

Our goal here is an analytic estimate of 6,(t; €, &) for
arbitrary values of 7, €, and &.

Using Duhamel’s integral we can represent our
solution as

0; = I, sin(Qr+¢)—I;cos(Qr+¢) (6)

p_’w’

*Numbers in brackets refer to the list of references at the
end of this paper.
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where

I, = j cosQéa—gidf; I, = J sin Q& Cef dé.

[¢] af 0 ﬁg
Here, 8, = 8(p = 1, 7, Q, ¢), where 8 is the solution to
the problem of equations (5) with ®(z) = 1. A solution
for & has been obtained in [2] and the results for 8,
have been extended in [3]. Using the results of the
latter reference we find that 8, can be estimated from:

M
0. =Fo(t)= E"”[ dm r'“/z/r(l +m/2)]
=1

= E“”[ A Tm/z] -
1

ew(x),
1

0<t<0(10), (7)

Mz
Mz

where
dl = 2,
(=1"[@m-1)1]?
dm+1 = Sgmzg o3
2 m[(m—1)!]
(= 1)"2n+1)!12n—2)!
25" [(n—1)!13n?
and, for. large 7, from:
8 = F (1) = In(47/C) + In(41/C)/(27) + 1/(27)
—31In?(4t/C)/(167%) — In(47/C)/(1677)
+(m2 +3)/3213) + O(In1/7%). 8)
In equation (7), I'(x) is the gamma function and
InC =7y=057722...is Euler’s constant. Also, E¥
represents the pth Euler transformation of the M term
partial sum X 4,,t™2. Thus, according to the definition
of the Euler transformation in [3,4], and again
referring to equation (7),
e = 4, ™2,

“ (m—1)! -
({2 J—— (p—1
o= L LSS

n=1

+

n=1

dm—n+1’ m> O,

p>0. (9

The series X 4, 7™ of equation (7) is the small t
expansion of 8;. It has been shown in [3] that, whereas
this small term expansion is only useful in a limited
range 0 < 7 « 1, the application of the Euler trans-
formation to this expansion as per equation (7) (with
p > 0) allows one to extract accurate estimates for &,
well into the moderate t region. [For example, by
using equation (7) with p =3 and M = 19, 8,(z = 30)
can be estimated to within 1% of the exact result.]
Accordingly, equations (7) and (8) together can be used
to estimate @, in the entire range 0 < 1, and to do this
within a maximum error of 19

In all applications of the Euler transformation here
and below, it appears that optimum values of M and p
(i.e. those values which result in the most accurate
estimate) will satisfy M < 25 and p < 4. The optimum
values of M and p for each individual computation
would be those which yielded latter terms (say the last
two terms) in the truncated I e{?’ series which were
smallest in absolute value compared to the summed
series. Further remarks on the suggested computational
procedure for the Euler transformed series which are
applicable throughout this work are provided in [3].
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The plan here is to use equations (7) and (8) in
equation (6) thereby obtaining analytic results for 6,
useful for all 0 < 1 and arbitrary Q and &. Each of the
four results indicated above in (4) will be investigated
in the following four sections. Finally, the last section
will present a summary of results along with illustrative
calculations of the 8, response for large, moderate and
small values of Q.

3. RESULTS FOR 0., r FIXED > 0, O ARBITRARY

As indicated above, equation {7) can be used to
accurately estimate §; in the range = 0(10) [3].
Accordingly, we expect that this equation can be
directly utilized in equation (6) to obtain an analytic
result for §; which is also useful within this t range.
Such a result would yield estimates for 6 at least
during some initial interval of its transient response.
Moreover, this would be true irregardless of the size
of Q.

Instead of direct substitution of equation (7) into
equation {6} it is more convenient and eguivalent to
first replace §; in equation (6) by its'small t expansion,
% An 7", take the appropriate term by term derivatives
of this, perform the indicated multiplication (by cos Q¢
or sinQ¢) and term by term integration, and to finally
take the multiple Euler transformation of the resuit.
Doing all this leads to the following results for I, and I;:

I M omd, (IM™EQr)
- P m
{Is} E ng 20m2 {Is‘"’)(ﬁr}}] ’ (10
where
Igl) — (23.{)1526'(2)((2?’.)’ I§” — (275)1528(2)(‘11-)’
I? = 5in(Qx), I = 1—cos(Q),
™ : 1/2 (2)
63 — @0 sin{Qr) _ 2n) S i (Qr)}’
S ~c0s(Q1) 2 - CA(Qr)
I® sin(Qr) cos(Qr)—1
{1@} = (QT){ - cos(Qt)} + {sin(Q«:) }
I sin{Qr)
= mi2—-1)
{I §””} (€x) {f—cos(ﬂr)}
(m 2) i3 cos{Qr)
— (@) sin{Qr)
(m~—2)(m—-4) 9
- [ m> 4,
Here C®(x) and §'*(x) are Fresnel integrals defined
as [5]:
1 *cosé
COx) = m——(zﬂ)m J; ——»5”2 dé,
1 x siné D
@y} o itk d
S = Gy ), w4

As suggested above, equation (6) will be used together
with equation {10) to estimate our solution for §; for
arbitrary Q and ¢ and for 7 < 0(10). In this range it
has been shown in [3] that (with predictable accuracy)
equation (7) can be used to estimate 8, to within an
error of the order of 1%, and we expect the situation
to be carried over to our present solution for 6.

Taking the limit Q-» o0 of the above results for
fixed Qr > 0 leads us to the special case of heating of
a halfspace (i.e. a = o0, wt = Qr fixed). Under this limit
we obtain results for 6, from the leading terms of
equation (10) (with p = 0). Using these with equation
(6) we obtain

) Qli2g, ] k o\
lim 3 = lim -Q_(;> (T;—To)

Qo 1 o0
0 < Qr fixed 0<Qr fixed

= 2V2[C¥ (et} sin(wt +e)
~ S wt) cos(wt +£)] + O(1/QYH)
(12)

where T; is the dimensional surface temperature. By
representing our results in the latter form we exhibit
the requirement that the temperature field of the heated
halfspace or “large” radius cylindrical cavity surface
must be independent of the radial dimension, a. The
result of equation (12) is consistent with the halfspace
temperature field solution given in an integral form

in [2].

4. RESULTS FOR 4, 1 FIXED >0, Q >

The result of the previous section is expected to be
useful up to large natural diffusion time t of the
material. When Q is large this means that equation
(10) will be useful from 7 =0 and on through many
periods of the heating, ie. up to values of Qt which
will be many multiples of 2=. In other words, for large Q
we expect that equation (10) will be useful well into
the time of quasi-steady state temperature oscillation
which must eventually be developed within the solid
and on the cavity surface. Accordingly, with fixed © we
can take the limit as () oo of I, and I, per equation
(10) and hope to extract 6, results from equation (6)
which characterize its asymptotic approach to quasi-
steady state. Doing so we eventually obtain the follow-
ing results:

: 2\"2 1 d3, 3
g, fe= (5) Q& 50

0 < 7 fixed
1[3 4%, 63
o [4 o os@ )] 1620
d, . 10571724, 1
{13)

. 2\ 1[. df 3
1 I ={— J— = T
anm (Q) Q [1 e COS(QT)} MR

0 < 1 fixed
1 4%, . 63
ot @ M T lgea

1 d3a,
93[ 6l +— = cos(Qt)J

1057!”2/17 1
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Using these results in equation (6) we obtain

im0 =
Q- : Q”Z

——=sin(Qr+¢e—n/4) + — l:cos Qr+e)
0 < 1 fixed

+d9sco 3 sin(Qr+e+n/4)
qr S088 |~ g Sinllkr+e /

1 . dg, .
+§5 {% sin{Qdt+5) + s sin s}

63
~ G sin{Qr +¢—n/4)
1 d3d,

+ g [6/16 cos(Qr+¢) ~ 30 ]
10571722, 1

+—R27—sm(ﬂt+g+n/4}-§-0(g4>

(15)

Depending on the value of t the value of df,/dr,
d*8,/dt? and d38,/dz® in the above can be computed
from either equation (7) or equation (8), i.e. from:

do, _dFo _ —I—E"”[}% mlmfmu}’

dr dr 2 L& g
&9, dF, &, d&F, 9
di? " de?’ de d
or from
dg, dF 1 1 3
= = E = | [——In(d1/C)} + — In*(4
dr  dr 1:[ 2t at r/C)+81:2 In"(4e/C)
1 (n?+4) In3¢
2 n(41/0) — azt
p T +O( A
&0, &F, &0, &F, )
di2 de?’ ded det

Three features of the results of equations {13)-(15)
are noteworthy. First, they appear to be useful (when
Q> 1) for all T where df,/dr, d*8,/dz* and d38,/dc®
are 0(1), eg. at least for 7 > 1. The region of appli-
cability of these results therefore overlap with the region
of applicability of the results of the previous section.
Second, when 7 > 1 and therefore when equations (17)
are useful, our analytic result of equation (15) is par-
ticularly simple to use. Finally, in the quasi-steady
state (t—oo and therefore df/dr, d%f,/dz* and
d38,/dr® — 0) the lag in phase, ¢, between the oscillating
surface temperature and the oscillating heat flux, along
with the amplitude, 4, of 8,, can be computed from:

lim 6; = Asin{Qr+¢—¢)

T 0

(18)
where

A= lim [2+12]Y2, ¢ = lim tan~"(I/],)

and where under the particular limit of this section

fim A =2 [1 1(2)“z+i(.%)+-1(3)3”
Qoo Q2 4\0 32\Q/ 128\Q
189 [ 2)\¥? AR
“wiila) o) |
1/2\Y* 3/2 972 3"2(19)
; - -1
am ¢ = tan [*‘5(5) +§(§)”§§(§>

20 2\ (252
(2} +olZ) |
+128(ﬁ> * (Q) }

The value of lim ¢ =n/4 is in required agreement
Q- x

with the results of periodic heating of a halfspace [2].

5. RESULTS FOR 6,, Q -0, 0 < Qr FIXED

In the range of moderate to small Q the results of
Section 3, useful up to moderate values of 7, cannot
beexpected to reveal the asymptotic approach to quasi-
steady behavior of §;. This is, of course, especially true
for small Q problems since for these the Section 3
results will not even extend up to a complete period
(Q = 2m) of the heating.

In this section we will study the problem of the
approach to quasi-steady state under the limit Q — Q.
The basic difference in the analysis here from that of
Section 3 is that dd,/dt in the integrals I, and I, of
equation (6) must be estimated by a combination of
the small to moderate 7 results of equation (7) together
with the large 7 results of equation (8). Thus, here we

need to compute
i, K (cos Q&) dF, cos Q&Y dF,
== . ——dé+ — 0
{Is} fo {Smﬂé} ag & L{snnc} g % @
where K is any moderate value such that both the
Fo and F, representations of #,(K) will yield reason-
able estimates.

Using the results for dFp/dr and dF,/dr as per
equations {16) and (17) in equation (20) the following
results were eventually obtained:

lim [, = —InQ+[Ci{Q7) +In(4/C%]

Q-0
0 < Qr fixed

cos(Q21)

~31Qin Q|:

lim 1= Si@0)~4QIn’ Q- 10InQ

O < Q2 fixed

+Si (Qr)] +0@Q) (1)

sin{Qr)

X [—Cf(ﬂr} + Or

- In(4,/C2}]
+0©Q) 2

where the cosine and sine integrals, Ci{x) and Si(x),
respectively, are defined as, [5]:

o cos § (=1
Ci(x) = ——L Tdé In(xC) + Z Snn)]
nf 0 (_ l)n 2+l (23)
I R P x

o ¢ o= Cn+ DR+ D
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Using the results of equations (21) and (22) in equation (6), we finally attain our present objective as follows:
éimo 0, = —InQsin(Qr+¢)

0 < Qr fixed
+ \:ln(4/C2) sin(Qt +¢) —-% cos(Q1 +¢) — g(Qr)sin e + f(Qr) cos £:| + % QIn? Qcos(Qr+¢)
- % Qln Q[;}— +{1+1n(d/C*»} cos(Qr+e) + = sm(Q'r +8) — g(Qr)cos e — f(Qr)sin s] +0(Q) (29
where, [5]:

fx)= Ci(x)sinx—[Si(x)—g}cosx = —[1-4-0( )]

g(x) = —Ci(x)cosx—[Si(x)—%]sinx = %[1 +0 P_)]

Further, with regard to the quasi-steady behaviour of 6, as per equations (18), we find from equations (21)
and (22) that

(25)

1/2
lim 4 = —In 9[1 +21n(4/CY)/InQ + { + 1n2(4/C2)} / n?Q+ nQ/4] [1+0©Q/In Q)] (26)
2
. 1—%3+%[1—1n(4/c2)]mn9 .
Im¢=tan™| -340 1+In@/CYIn Q+ 204 [l +0 (5)] ‘ @)

As is evident from these last results, and from equation (25), the quasi-steady amplitude of 6; becomes unbounded
and the phase lag, ¢, goes to zero as Q — 0.

6. RESULTS FOR §,, Qt - «, 0 < Q FIXED

For all 0 < Q the results of Section 3 provide us with an estimate of the 6, history up to moderate values of .
For large Q the resuits of Section 4 provide us with a more readily usable estimate of the §, history in the
range where 6, approaches and achieves quasi-steady state (i.e. in the large Qt range). For small Q the approach
to quasi-steady state of 6, will occur within the moderate Qr range (e.g. within the first few cycles of heating).
Estimates of the 6 history in that range are provided by the results of Section 5. In the range of moderate Q
we still seek a solution describing the history of 6, during its approach to quasi-steady state. We will obtain
this here from a representation for 6, in the limit of Qt — oo with 0 < Q fixed. To this end we compute

I, and I, according to
LQ7; Q)] (l(0; ) © {cos Q&Y db, g 9)
LOQu Q) U(0;)f ). |sinQé{de
For large v the latter integrals have been estimated with the use of the F,, representation of §, as per
equations (8) and (17). Using the result in equation (28) we find

I {L(QT;Q) _ fL(o0; Q) 1 sin(Qr)] Q In(Qr) sin(Q7)
P IS(QT;Q)} B {Is(oo;Q) +§{—cos(ﬂr)}_—2— Qr)? {—cos(ﬂr)
_l_[{cos(ﬂr) +2 | ( 4 sin(Qq) ] 30 In*(@Qq) [ sin(Qr)
Ty sin(Q'c)} 2 ™M\ ca)l-cos@f |78 @ |-cos@)
In@Qn)[ _ {cos(Qr) 302 Q? sin(Qr)
ME [Q{Sin(ﬂr)}+{ 1“(09) 2 }{—cos(ﬂr)}]
1 [{Ql (4 Q1 (cos(Qr)
o CQ) 2} sin(Q'c)}
302 4 Q2 4 Q sin(Q7)
B () Fnla) - Tow -2 _ian)]

3
o)
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Further, using these results in equation (6) we finally obtain

. . 1 QInQr
91111111 0, = Asin(Qr+e—¢) + [E -5 W} cose

0 < fixed
! in +an 4 cose +3Q2 lnZ(QT)coss-i-ln(QT) Qsin -f-Q2 3In 4 15co
- e+—In{— —_ e+ —— —— )= S e
Q? | M 2 M e/ T e @ Q7)? 4 cQ
1 4\ 1. (32 /4N @ [4\ Q@
)= 2 — )i e |~ (r2 4 4) -2
+(Qr)3[g{ln(CQ> 2}s1ns+{ 3 In (CQ) ) [n<CQ> T (n*+4) }cosa]
In3(Qr)
o[_—w ]

Here again A and ¢ can be obtained from I.(c0; ) and I (c0; ) according to equation (18). The only problem
remaining is that these latter two functions of Q are not yet available to us. This situation can be rectified,
and our present estimate can therefore be completed by matching, at some Qt = {, the above results of equation

(30)

(29) with the results of I, and I obtained in equations (10). Thus we obtain

where terms up to O(In®{/(*) are available but have
not been displayed. The above value of { must be
compatible with the useful ranges of the expansions
that were used and it should be chosen so as to
minimize the anticipated errors. Suggested values for
{ in the above are { = 2r for the computation of
I.(co; Q) and { = 3n/2 for that of I(c0; Q). It is further
recommended that I.(c0; Q) be computed from equa-
tion (29) for 0.14 < Q < 4 and that I(c0; Q) be com-
puted from equation (29) for 0.05 < Q < 4. For values
of Q above and below these ranges of €, the results
of Sections 4 and 5, respectively, should be used.
Following the above guidelines I.(c0; Q) and (o0 ;)
have been computed in the range 1072 < Q < 10?
(with a maximum error estimated to be of the order of
1%) and plotted in Fig. 1. Using equation (18) these

A

el o)

Lo @) o[ X miw (10
{uoo; n)} = E )L; 2077 {Ié""(C)

QlIn{ sin{
+‘5'C—2{_COSC}+... (31)

results have been used to obtain the corresponding
values for A and ¢. These are also plotted in Fig. 1.

7. SUMMARY OF RESULTS AND SOME
ILLUSTRATIVE COMPUTATIONS

The results of the last four sections were used to
develop analytic estimates for 6 in different ranges of
the 7, Q field. Of these estimates the suggested best
choice as a function of the value of Q and Qr are
summarized in Fig. 2. As noted in that figure, there
is one region that is not covered by our four separate
results, namely 30Q < Qr < 0.5. Within this region
and for a given Q, 6, can be estimated from equation
(24) where terms only up to and including the O(QIn* Q)
term are used. (Indeed, a careful investigation of such

LIM Ic
T+00
LIM I
Tem ° 4¢
L
5. I
A a¢
4 | E2 -8
LIM I¢
T-»0
3. F -6
2. L— - .4
m/2
LM Ig 4
L T -2
° 1 1 1 a
1072 107! I 10 02

T

F1G. 1. Plot of lim I, lim I, A and ¢ as functions of Q.
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an estimate in the limit of small Qz corroborates large ©

e
9% b [reon A T CONPITE Lo FROW X results obtained in [3] for the case of cavities heated
"EoioN & - ca:;}r??: Fi‘;: 22 with fluxes that are linear in t.) Following the recom-
ANDI, FROM EQ (i0). mendations of Fig. 2 it is estimated that the maximum

error to be anticipated in the computed value of 0,
would be of the order of 1% of its quasi-steady
amplitude A.

COMPUTE 1o
AND I4FROM
€08, 13) AND (1)

i b COMPUTE Io AND I
FROM EQ. {10)

The quasi-steady behavior of §; as defined in equa-
tion (18} is determined by the values of A{) and
#{€). From the results of Sections 4-6 these functions
are plotted in Fig. 1. The plotted values for 4 and ¢
can be reproduced from the appropriate estimates

COMPUTE I AND
T, FROM EQS. (28}

o

COMPUTE ¢ FROM
EQ, (21) AND I,
FROM _EO. {29}

presented earlier.
To illustrate the general response of 8, appropriate

computations for large (100}, moderate (1), and small
{1/100) values of Q and for e=nn/d, n=0, +1,...,
have been performed. The results of these computations
are shown in Fig. 3 where the response in the range
0 < Qr < 6m are presented. The plots for Q = 100 are
an accurate representation for the Q- co plots that

COMPUTE 8, FROM
EQ. {24)

i v

F1G. 2. Recommended computational procedure for 8, or

for I,

would be obtained from the result of equation (12).
The various analytic estimates obtained herein can
be used to readily compute transient and quasi-steady
cylindrical cavity surface temperature histories under
conditions of arbitrary periodic surface heating.

"
i wt

2
Irie

and I,.

ﬁt'dziowm%nnni )
R me"é"m'

‘

0’0"0’0"0

A

0’0‘0‘90%? dhe

VV'

(R
wwwo,

ALA

fLs .01

F1G. 3. Transient response of cavity surface temperature, 9, due to heat flux @ - sin (Qt +nn/4) for Q = 0.01, 1.0 and 100,
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TEMPERATURE DUNE CAVITE CYLINDRIQUE EN PAROI
CHAUFFEE PAR UN FLUX PERIODIQUE

Resume—On étudie la réponse de la température de surface d’un espace matériel limité intérieurement
au rayon r = g et chauffé par un flux Q = @sin(wr +¢). Le calcul est effectué & laide de Pintégrale de
Duhamel connaissant la solution déja obtenue du probléme du créneau de chaleur. L'application de la
transformation d'Euler aux développements valables pour les temps brefs et l'utilisation de divers
résultats sur les développements asymptotiques dans les calculs de solutions analytiques ont été utiles
dans différents domaines de variation de o et 1. De plus, ces estimations peuvent £tre employées pour
déterminer Thistoire compléte de la température de surface pour o et g arbitraires. Elles peuvent étre
aisément utilisées pour calculer Phistoire de la température 2 la surface r = g sous des conditions
arbitraires de chauffage périodigue.

TEMPERATUR EINER, MIT EINEM PERIODISCHEN WARMESTROM
AUFGEHEIZTEN WAND MIT ZYLINDRISCHEM HOHLRAUM

Zusammenfassung —Es wird der zeitliche Verlauf der Oberflichentemperatur eines Kdrpers mit anfénglich
einheitlicher Temperatur und ecinem innenliegenden Hohlraum mit dem Radius » = g untersucht, fiir
den Fall, daB der Heizwirmestrom gemiB der Bezichung @ = ( sin(wt +¢) zugefithrt wird. Dabei wird
das Duhamel-Integral zusammen mit einer zuvor ermiitelten Losung des Problems bei schrittweiser
Beheizung verwendet. Die Anwendung der Euler-Transformation auf den Fall kurzer Zeiten und der
Gebrauch verschiedener asymptotischer Entwicklungen erméglicht analytische NéherungsiSsungen fiir
verschiedene Bereiche von o und ¢. Zusammen konnen diese Niherungslosungen zur Bestimmung des
vollstindigen zeitlichen Verlaufes der Oberflichentemperatur fiir beliebige © und ¢ verwendet werden.
Der zeitliche Verlauf der Temperatur an der Oberfliiche r = a kann auf cinfache Weise bei beliebigen
periodischen Heizbedingungen ermittelt werden.

TEMITEPATYPA CTEHKM HWJIMHAPHUUYECKON
[TONOCTH 1P NEPUOAUYECKOM HATPEBE

Annotaums — V3yvanoch BRusiHMe NOABOAMMOIO IOTOKA Tefsa B Buue = (sin(w? +¢) Ha
TEMIEPATYPY NCBEPXHOCTH NONOCTH C BHYTPCHHHAM HHAMETPOM F = @ NPH IIEPBOHAMANBHO [OCTOSH-
HOM TeMOepaType NoBepxHOCTH nonocTd. C 3To# 1ensro Henonep3oBaics uaTerpan JoamMens sMecte
¢ ONYYEHHBIM PaHee PCLICHHEM 337a4H C NOCTOSHAMM CTYNSHYATLIM HarpesoM. C moMOLIBIO Ope-
obpaiosanus Difnepa /18 PAIIOKCHMA B CyYae MasjbiX BPEMEH, & TakkKe PAIHYHBIX ACHMITOTH-
HECKHX DA3NONKEHHH NOSYYCHbt SHANMTHICCKHE OLCHKH, MPUTONHBIE UIS PA3NHMHLIX HHANA3OHOB
Himenerns w i f. COBOKYNHOCTE 2THX OLEHOK MOXeT ObITh HCTIONB30BAHA LA DACYETE BPEMEHHON
33BHCHMOCTH TEMIEPATYPHI IOSEPXHOCTH IPH IPOHIBONBHBIX 3HAYCHUAX w K &, & TAKKE APH paciyere
TEMOEPATYDHI NOBEPXHOCTH ¥ = g B YCIIOBHAX INPOH3IBOJLHOIO NEPHOARYECKOTO HATpesa.



