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TEMPERATURE OF A CYLINDRICAL CAVITY WALL 
HEATED BY A PERIODIC FLUX 
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(Received 22 January 1976 and in revised form 1.5 September 1976) 

Abstract-Response of the surface temperature of an initially uniform temperature material space bounded 
internally at radius r = a and heated with a flux Q = Qsin(wt+e) is studied. This is done with the use 
of Duhamel’s integral together with a previously obtained solution to the constant step beating problem. 
Application of the Euler transformation to short time expansions and the use of various asymptotic 
expansions result in analytic solution estimates useful for different ranges of o and t. Together these 
estimates can be used to predict the entire history of the surface tem~rature for arbitrary o and E. 
They can easily be used to compute the r = a surface temperature history under conditions of arbitrary 

periodic heating. 

NOMENCLATURE 

amplitude of 8, in quasi-steady state; 
radius of cavity surface; 

exp(y); 
cosine integral; 
Fresnel cosine integral; 
multiple Euler transformation; 
terms of transformed series; 
coefficients in 0, expansion; 
small to moderate ‘5 estimate of 8,; 
large 5 estimate of 8,; 
functions related to sine and cosine integrals; 
integrals used in definition of S, response; 
terms in a series for estimating I,; 
terms in a series for estimating I,; 
a constant; 
thermal conductivity; 
number of times Euler transformation is 
taken; 
a periodic heat flux; 
a constant heat flux; 
radius ; 
Fresnel sine integral; 
sine integral; 
temperature; 
initial temperature; 
surface temperature; 
time. 

8, dimensionless temperature field resulting 
from constant Q heating; 
dimensionless temperature of cavity wall 
heated with constant Q; 
coefficients in 8, expansion; 

r/a; 
dimensionless time; 
phase lag between Q and 0,; 
dimensionless surface heat flux; 
dummy variable; 
dimension~~s w; 
frequency. 

1. INTRODUCTION 

THIS paper studies the temperature field of a region 
bounded internally by a cylinder of radius r = a, where 
the region is initially at uniform temperature, To, and 
where at time t = 0 the cavity wall r = a is heated by 
an oscillating heat Aux Q given by 

Q = Qsin(wt$s) = Qsin@z+&). (1) 

Here the dimensionless frequency, a, and time, 7, are 
defined as : 

Q=Waz; at 
~=-...- 

a a2 

Greek symbols 
where c( is the thermal diffusivity of the material. 
Attention is confined to analytic estimates of the cavity 

a, thermal diffusivity; wall temperature history. 
l-3 gamma function; The estimates obtained-there are four in all- 
Y? Euler’s constant; together are found to uniformly cover the entire range 

; 
phase of Q; 0 < t and 0 < n. We define the dimensionless tem- 
a value of Rz used for mat&~ng; perature field 8 and dirn~s~o~~s surface temperature 

8, dimensionless temperature; 0, as 
e St dimensionless surface temperature; 6 = 2(T- To)k/@a) = 8(p, T; R, E) 

8,=8(l,z;n,E)=e,(Z;n,&) I 
(3) 

*Presentaddress:BellTelephoneLaboratories, Whippany, 
New Jersey 07981, U.S.A. where T is the temperature field, p = r/a, and k is the 
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thermal conductivity of the material. Then the four 
separate results referred to are: 

Transient response for arbitrary R 

f3,, T fixed > 0, R arbitrary. (4a) 

Asymptotic approach to quasi-steady state in the limit 
of large R 

lim t& 0 < T fixed. 
n-m (4b) 

Asymptotic approach to quasi-steady state forjixed, 
nonzero Cl 

lim es 0 < Q fixed. 
Ih-m (4c) 

Asymptotic approach to quasi-steady state in the limit 
of small n 

lim es o<nzfixed. (44 
n-0 

The utility of these results cover every possible appli- 
cation of the specified periodic surface heat flux prob- 
lem (where the solid exterior to the cavity can be 
accurately modeled with uniform and constant proper- 
ties k and a). Thus, for example, the large fi estimates 
of (4a) and (4b) would find application in predicting 
internal wall temperatures in rapid fire, thick walled 
gun barrels (i.e. where the temperature field resulting 
from the fluctuating component of the periodic heating 
was negligible at the exterior wall of the barrel) where 
some useful modeling of the internal firing phenom- 
enology yielded a periodic wall flux boundary con- 
dition [l].* On the other extreme, the small 0 estimates 
of (4a) and (4d) would find application in cylindrical 
cavity earth heat exchanger problems where the fun- 
damental period of the periodic heating was based on 
the annual cycle. The moderate R estimates of (4a) 
and (4~) complete the general solution to the stated 
problem. These would find application, for example, in 
the latter earth heat exchanger problem where the 
details of the daily periodic heating cycle were of 
interest. 

2. STATEMENT OF THE PROBLEM 

The temperature field, 0, on and exterior to the cavity 
wall is governed by the following boundary value 
problem : 

ae a% i ae -_=--f-- 
a7 ap2 P ap 
P > 1, 7=o:e=o 

(5) 

p= 1, 7 > 0: -!! = 2@(7) = 2sin(nt+&) 
aP 

p-a, z > 0: e-0. 

Our goal here is an analytic estimate of 0&r; Q, E) for 
arbitrary values of 7, R, and E. 

Using Duhamel’s integral we can represent our 
solution as 

es = I, sin(Rr + E) -I, cos(R7 + E) (6) 
_____ 

*Numbers in brackets refer to the list of references at the 
end of this paper. 

where 

Here, 0, = e(p = 1, r; R, a), where 0 is the solution to 
the problem of equations (5) with Q(T) = 1. A solution 
for 0 has been obtained in [2] and the results for 8, 
have been extended in [3]. Using the results of the 
latter reference we find that 8, can be estimated from: 

0, = F,(7) = E@) c d [,r, ,P/‘/l.(l +m/2)j 

rM 1 M 

= E(p)l~l i,7m’2J = El &)(.r), 

where 
dl = 2, 

0 < 7 < O(lO), (7) 

d 
(- 1)“[(2m- l)!]’ 

m+l = 25”-2m[(m- l)lJ3 

+c m (-1)“(2n+1)!(2n-2)!d,.+1, m, o 

“=l 2’“-‘[(n- l)!]%’ 

and, for large 7, from : 

8, = F,(z) = ln(4t/C) + ln(4r/C)/(2z) + l/(27) 

- 3 ln2(4r/C)/(16r2) - ln(4r/C)/( 16r2) 

+ (n2 + 3)/(32r2) + 0(ln3r/r3). (8) 

In equation (7), I(x) is the gamma function and 
In C = y = 0.57722.. . is Euler’s constant. Also, ,I?‘) 
represents the pth Euler transformation of the M term 
partial sum I: &,rmi2. Thus, according to the definition 
of the Euler transformation in [3,4], and again 
referring to equation (7), 

ec) = 1 7.m/2 In 3 

eg’ = L (m-l)! 

2mil (m-n)!(n-I)! 
es:-,‘) i, p > 0. (9) 

The series 2 Lm7mi2 of equation (7) is the small r 
expansion of 8,. It has been shown in [3] that, whereas 
this small term expansion is only useful in a limited 
range 0 < 7 cc 1, the application of the Euler trans- 
formation to this expansion as per equation (7) (with 
p > 0) allows one to extract accurate estimates for 0, 
well into the moderate T region. [For example, by 
using equation (7) with p = 3 and A4 = 19, &(7 = 30) 
can be estimated to within 1% of the exact result.] 
Accordingly, equations (7) and (8) together can be used 
to estimate 8, in the entire range 0 < 7, and to do this 
within a maximum error of 1% 

In all applications of the Euler transformation here 
and below, it appears that optimum values of M and p 
(i.e. those values which result in the most accurate 
estimate) will satisfy M < 25 and p < 4. The optimum 
values of M and p for each individual computation 
would be those which yielded latter terms (say the last 
two terms) in the truncated Z e,$’ series which were 
smallest in absolute value compared to the summed 
series. Further remarks on the suggested computational 
procedure for the Euler transformed series which are 
applicable throughout this work are provided in [3]. 
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The plan here is to use equations (7) and (8) in 
equation (6) thereby obtaining analytic results for 0, 
useful for all 0 -=x T and arbitrary R and E. Each of the 
four results indicated above in (4) will be investigated 
in the following four sections. Finally, the last section 
will present a summary of results along with illustrative 
calculations of the 0, response for large, moderate and 
small values of a. 

3. RESULTS FOR Q~,T FIXED$O,R ARBITRARY 

As indicated above, equation (7) can be used to 
accurately estimate 8, in the range 7 = O(I0) [3]. 
Accordingly, we expect that this equation can be 
directly utilized in equation (6) to obtain an analytic 
result for es which is also useful within this z range. 
Such a result would yield estimates for & at least 
during some initial interval of its transient response. 
Moreover, this would be true irregardless of the size 
of R. 

Instead of direct substitution of equation (7) into 
equation (4) it is more convenient and equivalent to 
first replace 6, in equation (6) by its small r expansion, 
ZI,Z?‘~, take the appropriate term by term derivatives 
of this, perform the indicated multiplication (by cos fig 
or sinR{) and term by term integration, and to finally 
take the multiple Euler transformation of the result. 
Doing all this leads to the following results for I, and I,: 

where 

1:” = (2~)l~ZC(Z)(~~~, lil’ = (2~)1’2~~2)(~7), 

1:‘) = sin(&), 1j2’ = 1 - COS(QZ), 

- 

Here C(2)(x) and S”)(x) are Fresnel integrals 
as [S]: 

1 s xcos{ - __ 
c’2’(xJ = (3p2 o <i/Z df* 

1 
$2’(x) =: - 

i 

x sin < 
(2+? o Fdl* 

defined 

(11) 

As suggested above, equation (6) will be used together 
with equation (10) to estimate our solution for 8, for 
arbitrary R and E and for t < O(10). In this range it 
has been shown in [3] that (with predictable accuracy) 
equation (7) can be used to estimate & to within an 
error of the order of l%, and we expect the situation 
to be carried over to our present solution for 0,. 

Taking the limit sZ-+ co of the above rest&s for 
fixed RT 2 0 leads us to the special case of heating of 
a halfspace (i.e. a --) M, at = $‘2r fixed). Under this limit 
we obtain results for 0, from the leading terms of 
equation (10) (with p = 0). Using these with equation 
(6) we obtain 

lim 
we k @ 112 
__S = lim _ _ K-70) 

n-r 2 n-ix 
0 S It? fixed 

i! Q a 
0 4 Qz fixed 

= 21’2[C(2)(~f)sin(~f+s) 

-P(WC) cos(wt +s)] + O( 1/XP2) 

(12) 

where T, is the dimensional surface temperature. By 
representing our results in the latter form we exhibit 
the requirement that the temperature field of the heated 
halfspace or “large” radius cylindrical cavity surface 
must be independent of the radial dimension, a. The 
result of equation (12) is consistent with the halfspace 
temperature field solution given in an integral form 
in [2]. 

4.RESULTS FOR B,, T FIXED >O,R+m 

The result of the previous section is expected to be 
useful up to large natural diffusion time T of the 
material. When R is large this means that equation 
(10) will be useful from z = 0 and on through many 
periods of the heating, i.e. up to values of f2r which 
will be many multiples of 2x. In other words, for large n 
we expect that equation (10) will be useful well into 
the time of quasi-steady state temperature oscillation 
which must eventually be developed within the solid 
and on the cavity surface. Accordingly, with fixed r we 
can take the limit as R -+ 00 of I, and I, per equation 
(10) and hope to extract 0, results from equation (6) 
which characterize its asymptotic approach to quasi- 
steady state. Doing so we eventually obtain the follow- 
ing results : 

lim I, 
2 “’ 1 3 

= o+m + de, sm(DT) . - 
0 < zfixed 0 

n 5 & 2(2@3'2 

+-$ [ ;+!?&OS(nT) 1 -- 63 

16(2L?) 5’2 

1 d=& . 63 
+ 3 ~sm(nT) - 16(2Q)5,2 

-6&+~COS(RT) 1 
- (14) 
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Using these results in equation (6) we obtain 

lim 0, = &sin(Q7+e--rt/4)+~ 
n-m 

COS(fi7fE) 

0 < rfixed 

d& I 3 
+ hr ‘OS s - 4~312 ~ sin(R7 + E + 77/4) 

1 
-&sin(Gr+E_n 

d38, 
6&,cos(Wkn)-scos~ 

I 

105371’217 
+ 

16ck7’z 
sm(cfi+s+77/4)+0 

Depending on the value of 7 the value of d&/dr, 
d28,1dz2 and d3&/dz3 in the above can be computed 
from either equation (7) or equation (8), i.e. from: 

d*& d2Fo d38, d3Fo 

(16) 

L=- 
d72 d72 ’ s = +l 

or from 

de, dF, 1 

x= d7 
__ = ; 1 - i In(47/C) + $ ln2(47/C) 

d’& d2F, d3& d3F, _zz_ 
d72 d7Z ’ s‘=T’ 

(17) 

Three features of the results of equations (13)-(H) 
are noteworthy. First, they appear to be useful (when 
fl >> 1) for all 7 where d@,/dz, d28,/d72 and d38,‘dr3 
are O(l), e.g. at least for 7 > 1. The region of appli- 
cability of these results therefore overlap with the region 
of applicability of the results of the previous section. 
Second, when 7 >> 1 and therefore when equations (17) 
are useful, our analytic result of equation (15) is par- 
ticularly simple to use. Finally, in the quasi-steady 
state (7+ co and therefore d&/d7, d28,/d7’ and 
d3@,/ds3 -+ 0) the lag in phase, #, between the oscillating 
surface temperature and the oscillating heat flux, along 
with the amplitude, A, of @,, can be computed from: 

lim 6, = A sin(R7 + E - cfi) (18) r-i0 

where 

A = lim [Z,’ +Z,Z]lj2, # = lim tan-‘(Z,/Z& 
r’n: t-;O 

and where under the particular limit of this section 

The value of jrnm 4 = 7c/4 is in required agreement 
_ 

with the results of periodic heating of a halfspace [2]. 

5. RESULTS FOR t),, Q -+ 0, 0 < IZT FIXED 

In the range of moderate to small R the results of 
Section 3, useful up to moderate values of 7, cannot 
beexpected to reveal the asymptotic approach to quasi- 
steady behavior of 6,. This is, of course, especially true 
for small fl problems since for these the Section 3 
results will not even extend up to a complete period 
(sb7 = 2n) of the heating. 

In this section we will study the problem of the 
approach to quasi-steady state under the limit 0 --) 0. 
The basic difference in the analysis here from that of 
Section 3 is that d?&/d7 in the integrals Z, and Z, of 
equation (6) must be estimated by a combination of 
the small to moderate 7 results of equation (7) together 
with the large 7 results of equation (8). Thus, here we 
need to compute 

where K is any moderate value such that both the 
F0 and F, representations of g,(K) will yield reason- 
able estimates. 

Using the results for dFajd7 and dF,/dz as per 
equations (16) and (17) in equation (20) the following 
results were eventually obtained : 

lim 
Sl-VO 

Z, = -In G + [Ci(Qz) + ln(4/C2)] 

0 <n?fixed 

+ si(nr) $0(Q) (21) ] 

------i- In(4/C2) 
I 

+0(Q) (22) 

where the cosine and sine integrals, G(x) and Si(x), 
respectively, are defined as, [5 J: 
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Using the results of equations (21) and (22) in equation (6), we finally attain our present objective as follows: 

lim 6, = -lnnsin(Qt+a) 
n-0 

O<RTfiXed 

+ 

[ 
ln(4/Cz)sin(Qr+e) -,; cos(Qr +E) - g(&)sin E +f(!%) cos E 1 + f Qln’ Qcos(Qr +E) 

-iRlnR ~+{l+ln(4/Cz)}cos(Rr+s)+~sin(Rr+s)-g(Rr)cosc-f(RT)sin~ +0(Q) (24) 
[’ 1 

where, [5] : 

f(x)= Ci(x)sinx- L%(x)--? cosx =I l+O _L 
[ 21 x[ LJ 

g(x)=-Ci(x)cosx- Si(x)-F sinx=L l+O -l- 
[ 21 X4 LJI 

(25) 

Further, with regard to the quasi-steady behaviour of 8, as per equations (18), we find from equations (21) 
and (22) that 

1+21n(4/C2)/lnR+ }/ 1nZR+&/4 ]Li2[l+WbWl (26) 

lim$=tan-’ ---?-- 
R-r0 I r Qln’R 1 

1-p 2n +;[l-1n(4/C2)]Q1n0 

21nR 1+ 1n(4/C2)/ln Q + 7rSZ/4 ! ! 
[l+$J] . (27) 

As is evident from these last results, and from equation (25), the quasi-steady amplitude of 0, becomes unbounded 
and the phase lag, 4, goes to zero as n * 0. 

6. RESULTS FOR 8.. RT -+ co, 0 < Q FIXED 

For all 0 < R the results of Section 3 provide us with an estimate of the 8, history up to moderate values of 7. 

For large R the results of Section 4 provide us with a more readily usable estimate of the & history in the 
range where 0, approaches and achieves quasi-steady state (i.e. in the large R7 range). For small R the approach 
to quasi-steady state of 0, will occur within the moderate Q7 range (e.g. within the first few cycles of heating). 
Estimates of the 0, history in that range are provided by the results of Section 5. In the range of moderate R 
we still seek a solution describing the history of 0, during its approach to quasi-steady state. We will obtain 
this here from a representation for & in the limit of R7 -+ cc with 0 < R fixed. To this end we compute 
I, and I, according to 

For large T the latter integrals have been estimated with the use of the F, representation of 8, as per 
equations (8) and (17). Using the result in equation (28) we find 

+ o ln3W) 1 1 w. (29) 
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Further, using these results in equation (6) we finally obtain 

lim 0, = Asin(Slr+s-4)+ 
o-I 

O<RfiXCd [ 
‘--p 

R ln@r) 

nt 2 (Qz)’ I 
CoSE 

-~[sin~+~ln(~)coss]+~~cos~+~[nsini+~{3ln~~~)-ljcosi] 

(30) 

Here again A and 4 can be obtained from Z,(co; Q) and I,(m; a) according to equation (18). The only problem 
remaining is that these latter two functions of I): are not yet available to us. This situation can be rectified, 
and our present estimate can therefore be completed by matching, at some Rr = [, the above results of equation 
(29) with the results of 1, and Z, obtained in equations (10). Thus we obtain 

(31) 

where terms up to 0(ln3</<4) are available but have 
not been displayed. The above value of [ must be 
compatible with the useful ranges of the expansions 
that were used and it should be chosen so as to 
minimize the anticipated errors. Suggested values for 
[ in the above are < = 27~ for the computation of 
I,(cu ; Q) and [ = 3x/2 for that of 1Jcc ; Cl). It is further 
recommended that 1Jcc ; !A) be computed from equa- 
tion (29) for 0.14 ,< R < 4 and that Z&co; Q) be com- 
puted from equation (29) for 0.05 d C2 < 4. For values 
of R above and below these ranges of R, the results 

results have been used to obtain the corresponding 
values for A and c$. These are also plotted in Fig. 1. 

7. SUMMARY OF RESULTS AND SOME 
ILLUSTRATIVE COMPUTATIONS 

The results of the last four sections were used to 
develop analytic estimates for 0, in different ranges of 
the z, 0 field. Of these estimates the suggested best 
choice as a function of the value of s1 and Rt are 
summarized in Fig. 2. As noted in that figure, there 

of Sections 4 and 5, respectively, should be used. is one region that is not covered by our four separate 
Following theaboveguidelines I,(co; Q) and I,(co; a) results, namely 300 < RT < 0.5. Within this region 

have been computed in the range 10e2 < R < 10’ and for a given Q t& can be estimated from equation 
(with a maximum error estimated to be of the order of (24) where terms only up to and including the O(Q In’ Q) 
1%) and plotted in Fig. 1. Using equation (18) these term are used. (Indeed, a careful investigation of such 

FIG. 1. Plot of lim I,, lim I,, A and 4 as functions of R 
r-02 z-01, 
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ANQ I*FRoM 
EQS. I31 UID 041 

COMPUTE I, WQH 

,nr 

FIG. 2. Recommended computational procedure for 8, or 
for I, and I,. 

an estimate in the hmit of small Q-r corroborates Iarge T 
results obtained in [33 for the case of cavities heated 
with fluxes that are linear in T.) Following the rccom- 
mendations of Fig. 2 it is estimated that the maximum 
error to be anticipated in the computed value of 0, 
would be of the order of 1% of its quasi-steady 
amplitude A. 

The quasi-steady behavior of @, as de&d in qua- 
tion (IS) is determined by the values of A@) and 
#(Q. From the results of Sections 4-6 these functions 
are plotted in Fig. 1. The plotted values for A and Cp 
can be reproduced from the appropriate estimates 
presented earlier. 

To illustrate the general response of &, appropriate 
~rnpu~t~ons for large (l(B), moderate (l), and small 
(l/i~) values of Sz and for E = nn/4, n = U, j, I,. . . , 
have been performed.The resufts of these computations 
are shown in Fig. 3 where the response in the range 
0 < Sk < 6rc are presented. The plots for Q = 100 are 
an accurate representation for the C? + co plots that 
would be obtained from the result of equation (12). 

The various analytic estimates obtained herein can 
be used to readily compute transient and quasi-steady 
cylindrical cavity surface temperature histories under 
conditions of arbitrary periodic surface heating. 

I n= .OI 

FIG. 3. Transient response of cavity surface temperature, %,, due to heat flux Q. sin (Si?t+nx/4) for R = 0.01, 1.0 and 100. 
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~~P~RATUR~ DUNE CAVITE C~~~N~~~~UE EN PARUI 
CHAUFFEE PAR UN FLUX PER~~D~~U~ 

R&sum&On etudie la reponse de la temperature de surface dun espace materiel hmite interieurement 
au rayon r = a et chauffe par un flux Q = Qsin(wt+s). Le calcul est effectue a I’aide de I’intbgrale de 
Duhamel connaissant la solution deja obtenue du probleme du crbneau de chaleur. L’application de la 
transformation d’Euler aux developpements valables pour les temps brefs et l’utihsation de divers 
r&ultats sur les dbveloppements asymptotiques dans les calculs de solutions analytiques ant et& utiles 
darts differents domaines de variation de w et t. De plus, o% estimations peuvent etre employees pour 
d~te~iner I’histoire complete de la temperature de surface pour w et E arbitraires. E&s peuvent etre 
aisement utifis&es pour caleuler l’histoire de la temperature B la surface I = u sous des conditions 

arbitraires de chauffage piriodique. 

TEMPERATUR FINER, MIT EINEM PERIGDISCHEN W~RMESTR#M 
AUFGEHElZTEN WAND MIT ZYLINDRISCHEM HOHLRAUM 

Zusemmenfassung-Es wird der zeitliche Verlauf der O~rfl~chentem~ratur eines Kiirpers mit anfanghch 
einheitlicher Temperatur und einem innenIiegenden Hoh~raum mit dem Radius r -ii a untersucht, fiir 
den Fdl, daf3 der ~eizw~rmestrom gemaD der ~zjeh~~~ Q = Q sin(wt -I- s) zugefuhrt wird. Dabei wird 
das Duh~e~-Inte~ai zusammen mit einer tuvor ermittehen Losung des Problems bei schrittweiser 
Beheizung verwendet. Die Anwendung der Euler-Transformation auf den Fall kurzer Zeiten und der 
Gebrauch verschiedener asymptotischer Entwicklungen ermoglicht andytische N&herungsIiisungen fur 
verschiedene Rereiche von cr) und t. Zusammen k&men diese N~herungsl~sungen znr Restimmung des 
vol~st~ndigen zeitlichen Verlaufes der O~r~~chentemperatur fur behebige w und E verwendet werden. 
Der zeitliche Verlauf der Temperatur an der Oberflache r = u kann auf einfache Weise bei beliebigen 

periodischen Hei~~dingungen ermittelt werden. 

T~~~EPATYPA CTEHKM ~~~~~H~P~~ECKO~ 
fKXJOCTM I-lPM ~EP~O~~~~CKOM HAl-PEBE 

AHHQT~~HR - M3yYanocb nnnmuie nonaoxuirvroro noroxa renna B slrne Q = Q sin(wt +z) Ha 
TelblnepaTypy nosepxsocrsf n~nocuic 6rryTpenwiMfiEiaMerpoM r=a npn nepBona4anbHo noc~olf~- 
~o~Te~nepa~ypeno~lepxwocl*wnonocTti.CsToiiuenb~acnonb30sanca1lHTerpan &oaMenanMecre 
C ~O~yqeHHblM paI%% pW.ieEiHeM 3afiaWiC n~TO~HH~~Cry~eHqaTbIM SEtIJXB0M.C EKYMOlUbEOnpe- 
06pa~~BaH~~ 32inepa fists ~3~o~eHu~ B cnyrae Manbix B~~MCH,~ Tsixxce pa3~~~Hb~x a~~MnT~T~- 
w2c~z.i~ pa3no~e~u~ nonyrewbt a~aR~T~~ecKne ouesnw, np~r#~nbIe ansi pa3nnwnabrx A~ana~HoB 
U3MeHeHIIR Wtf f. ~~BOKy~H~~Tb~T~XO~eHO~MO~eT6biTbKC~O~b3~B~Ha~ff~ P~~~eTaB~~eHHO~ 
3a~acu~ocruTe~neparypb~nosepxHocT~np~npoa3eonb~bix sHareHaRxwn~,aTarmenplipacse-re 

TeMnepaTypblnOsepXHocTlr Y=iZB yCJIOBHiiX ~P~~~BORbHOrO nep~~~n~eC~Or0 HSifJYeBa. 


